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Abstract

This paper examines the role of health in determining aggregate productivity through
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rium model is developed that features a relatively high return to health for men in agri-
culture, implying a reallocation of female talent toward nonagriculture when health of
the general population is improved. Quantitative analysis shows that a health subsidy
is more cost-effective than an education subsidy in elevating aggregate productivity, in
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1 Introduction

It has long been a pivotal task in macroeconomics to understand why some countries are
rich while others are poor. The wide labor productivity gap in agriculture across countries
relative to other sectors is key to understanding the cross-country differences in aggre-
gate productivity (Gollin, Parente, and Rogerson, 2002; Caselli, 2005; Gollin, Lagakos and
Waugh, 2014).

Various factors have been explored to explain the low agricultural productivity in low-
income countries, including low technical input, high transaction cost, and severe resource
misallocation. Among such factors is selection: many workers, women as an exemplified
group, who lack a comparative advantage in agriculture, self-select into agriculture as a re-
sult of low economy-wide efficiency, subsistence requirements, and factor market distortions
(Lagakos and Waugh, 2013; Adamopoulos et al., 2022; Lee, 2016). The misuse of talent
then drives down agricultural and aggregate labor productivity.

Health also shapes selection. People in poor countries generally have poor health. They
are more likely to suffer from malnutrition, disease, and shorter lifetimes than people in
rich countries. This impacts education and sectoral occupational choices. Yet the link
between health and aggregate productivity through sectoral labor allocation remains largely
uninvestigated. This paper explores this link.

In particular, I examine, in the context of a general equilibrium model, how health
affects aggregate productivity through its influences on the gender division of labor between
agriculture and nonagriculture, based on the fact that the relative return to health across
different types of activities differs between genders, as documented by the literature (Pitt,
Rosenzweig, and Hassan, 2012; Rendall, 2017). Specifically, improved health increases the
physical strength of men considerably more than that of women, implying a higher return
to health for men than for women in traditional (brawn-based) agriculture. Health also
augments education investment, which raises nonagricultural productivity for both genders
comparably. These facts imply that the return to health for women in nonagricultural
production is relatively high. Therefore, a general improvement in health can enhance
aggregate productivity by allowing more women to self-select into nonagriculture where
they have a comparative advantage.

This mechanism is supported empirically. Pitt, Rosenzweig, and Hassan (2012) docu-
ment that, increases in body mass from improved health and nutrition have substantially
larger effects on enhancing physical strength for men than for women, but have larger ef-
fects on schooling for women than for men. They find that in a brawn-based economy,
big-sized men attend less school and are more likely to engage in energy-intensive activities
than small-sized men, while big-sized women are marginally more likely to be in school
and participate less in energy-intensive activities than small-sized women. Studies with
randomized field experiments in low-income countries also indicate that increased health
improved schooling outcomes significantly more for women than for men (Miguel and Kre-
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mer, 2004; Bobonis, Miguel, and Puri-Sharma, 2006; Field, Robles, and Torero, 2009) and
induced women to shift out of agriculture (Baird et al., 2016). Consistent with the micro-
level evidence, cross-country data in Figure 1 shows that controlling for a country’s income
level, better health, indicated by longer life expectancy (LE) or a lower maternal mortality
rate (MMR), is negatively associated with the female share of agricultural employment and
positively associated with the female-to-male years of schooling ratio.1

Figure 1. Health versus Female Agricultural Employment and Education

Note: This figure shows cross-country relationships between health and the female share of agricultural
employment and the female-to-male years of schooling ratio, controlling for GDP per capita. The maternal
mortality rate is defined as the number of maternal deaths per 100,000 live births. Data are for the year
2005. The coefficients of health are statistically significant at 1% for all specifications.

Data source: WDI, FAO, Barro-Lee.

To investigate the macroeconomic implications of the differential health returns based
on gender, I construct a two-sector general equilibrium model with overlapping generations
of heterogeneous individuals, embedded in an economy described by the Roy (1951) model.
Individuals make decisions concerning investment in health and education and, later, the
sector to work in (i.e., agriculture versus nonagriculture). They are ex-ante heterogeneous
in two dimensions – gender and initial human capital. The direct health effects lie in three
dimensions: better health lowers mortality, improves human capital accumulation, and en-
hances work productivity. The key feature of the model is that agricultural production,
for which brawn is the major input, is more health intensive for men than for women;
thus, men enjoy a higher return to health in the agricultural sector. This captures the fact

1In the Online Appendix, I use cross-sectional individual-level data from the Demographic and Health
Surveys for 33 Sub-Saharan African countries and show that the correlation between health and education
is larger for women than for men, especially for the population with lower socioeconomic status, and that
the correlation between health and nonagricultural employment is also larger for women than for men,
regardless of the socioeconomic status.
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that improved health increases the physical strength of men more than that of women. In
contrast, nonagricultural production requires both health and human capital and its tech-
nology does not differ across genders. General health improvements thus elevate women’s
comparative advantage in nonagricultural work, shifting the allocation of women toward
nonagriculture and thereby enhancing aggregate productivity. In addition, women face a
barrier of working in nonagriculture, which in turn affects their investment and sectoral
choices.2

To assess these mechanisms quantitatively, I calibrate the model to match some key
moments in the health, education, and economics data of two Sub-Saharan African (SSA)
countries. I first calibrate the model to fit the data of Kenya, a typical low-income country
in Africa, and use it as the benchmark economy. Then I recalibrate a set of country-
specific parameters for Mauritius, a relatively rich SSA country for comparison. My model
explains 47% of the agricultural labor productivity gap, 61% of the nonagricultural labor
productivity gap, and 52% of the aggregate labor productivity gap observed in the data
between the two countries.

The calibrated model is then used for quantitative analysis. I start with comparing the
impact of health production efficiency to total factor productivity (TFP). By setting each
of these two parameters of Kenya to the Mauritian values, I find that, while the TFP dif-
ference is responsible for most of the aggregate labor productivity gap between Kenya and
Mauritius, health production efficiency is highly comparable to TFP in explaining differ-
ences in agricultural labor productivity and employment share between the two countries.
Moreover, improving health production efficiency has a larger impact on reducing female
agricultural employment share than improving TFP.

Next, I assess the quantitative importance of modeling an endogenous distribution of
idiosyncratic productivities, as opposed to assuming an exogenous distribution. While the
literature typically takes the distribution of individual productivities as given when studying
sectoral labor allocation (e.g., Lagakos and Waugh, 2013; Lee, 2016), my model endoge-
nizes this distribution through individuals’ decisions of health and education investment.
To examine the difference, I compare the benchmark model with one in which both health
and education decisions are taken as given, when posing a positive TFP or gender bar-
rier shock to both economies. It turns out that the impacts of these shocks on aggregate
productivity are considerably smaller in the model with exogenous distribution of individ-
ual productivities, compared to the benchmark model. This is essentially because in the
exogenous-distribution model, individuals cannot respond to changes in the economic envi-
ronment by altering health or education investment. This result suggests that studies that
assume an exogenous distribution of idiosyncratic productivities potentially underestimate
the impact of economic factors such as TFP or labor market frictions.

Furthermore, I explore the sectoral labor productivity gap, a stylized fact in the macro-
2Lee (2016) quantifies gender-specific labor market frictions in agriculture and nonagriculture, and finds

a negative relation between relative friction against women in nonagriculture and a country’s income level.
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development literature.3 I conduct a decomposition analysis to examine the contribution
of economic factors – technology, education, innate ability, health, and gender barrier – to
the sectoral wage gap. I find that innate ability accounts for most of the sectoral wage
differences (40%), followed by technology related to factor intensity (35%) and education
(26%). My result is consistent with the literature which finds that selection based on
unobserved ability plays a major role in explaining the sectoral wage gap (Herrendorf and
Schoellman, 2018; Hamory et al., 2021).

Turn to policy. I concentrate on policies of health and education, the centerpieces
of many development policies. I conduct two sets of policy experiments – the first set
increases public health expenditure and the second offers a subsidy proportional to indi-
viduals’ schooling time. Each set consists of experiments implemented on all individuals or
target a specific gender;4 and all policies are under the same budgetary cost. I find that
the health subsidy is more cost-effective than the education subsidy in raising aggregate
labor productivity, in reducing the agricultural employment share, and in improving general
welfare. This is primarily because the health subsidy generates positive labor productivity
effects that impact both sectors. On the one hand, better health improves agricultural
productivity, which eases subsistence constraints and pushes workers out of agriculture.
On the other hand, it enhances nonagricultural productivity, which pulls labor toward
nonagriculture. Conversely, the working of the education subsidy mainly hinges on the
nonagricultural sector and hence has a limited impact. Additionally, the health subsidy
reduces mortality effectively which, combined with its productivity effect, generates a more
substantial welfare benefit than the education subsidy. Furthermore, I find that the health
subsidy is more effective in raising aggregate labor productivity when offered uniformly to
both genders or targeting men, compared to targeting women, while the education subsidy
is most effective in raising aggregate labor productivity when targeting women and least
effective when targeting men.

Finally, I explore the differences in policy effects between general equilibrium and par-
tial equilibrium analyses. This sheds light on the discrepancy between a nation-wide policy
and a local one, such as those in randomized controlled trials (RCTs). My results suggest
that, while RCTs find both health and education subsidies effective in improving education
and labor market outcomes, when such policies are implemented at the national level the
effectiveness of the health policy is enhanced while that of the education policy is dimin-
ished.

This paper contributes to the literature in three ways. First, it explores the implications
of differential returns to health between genders across activities – a fact documented in
the micro-development literature – for the sectoral allocation of labor and for aggregate

3The literature documents a large productivity or wage gap between agriculture and nonagriculture in
many countries (Gollin, Lagakos, and Waugh, 2014).

4This policy design is highly relevant to the real-world policies, many of which have targeted women
(see a review in Duflo, 2012).
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productivity. Second, by incorporating individual decisions concerning health and edu-
cation into a Roy-type general equilibrium framework, this paper complements both the
macro literature, in which modeling of sectoral allocation typically abstracts from individ-
uals’ investment choices, and the empirical literature, which typically neglects the general
equilibrium effect. Third, this paper sheds light on the relative importance of health policy
in sectoral allocation and structural transformation.

Related literature

This paper draws upon a rich literature in a number of areas. First, it is related to the liter-
ature on cross-country productivity differences and, in particular, those in the agricultural
sector that overshadow others. Important contributions to this literature include Restuccia,
Yang, and Zhu (2008), Chen (2020), Donovan (2021), and Caunedo and Keller (2021) on
low level or low quality of technical inputs in agriculture in poor countries; Adamopoulos
(2011), Gollin and Rogerson (2010, 2014), Tombe (2015), and Brooks and Donovan (2020)
on high transaction, trade, or infrastructure costs; and Adamopoulos and Restuccia (2014),
Chen (2017), Chen, Restuccia, and Santaeulalia-Llopis (2021), Adamopoulos et al. (2022),
and Chen, Restuccia and Santaeulalia-Llopis (2023) on land misallocation and farm size
distortion.

The studies most relevant to this paper are Lagakos and Waugh (2013) and Lee (2016).
The former paper develops a general equilibrium Roy model in which heterogeneous work-
ers self-select into the agricultural sector or the nonagricultural sector. The authors find
that the presence of the subsistence requirement and low economy-wide efficiency alone can
explain a substantial part of the relatively low agricultural labor productivity in poor coun-
tries by inducing a large fraction of unproductive workers into agriculture. In particular,
the large share of female employment in agriculture in low-income countries supports their
theory. Following their study, Lee (2016) focuses on the impact of gender-specific labor
market frictions on cross-country productivity differences and finds that the larger frictions
faced by females in nonagriculture account for a considerable part of the low agricultural
labor productivity in low-income countries.

My paper is similar to their papers in that they all use a Roy general equilibrium model
to study the allocation of heterogeneous workers between agriculture and nonagriculture
and draw implications for aggregate productivity. My paper, however, differs from their
papers in two essential ways. First, I focus on the role of health in the gender division
of labor which is absent in their papers. To my best knowledge, this is the first paper
that investigates the impact of health on aggregate productivity through its effect on the
gender division of labor across sectors. Second, while their papers take the distribution
of workers’ productivities as given, my paper allows this distribution to be endogenous,
depending on individuals’ investments in education and health. I find that estimates of the
impact of economic factors such as TFP and labor market frictions can be biased when
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such investment decisions are neglected.
Another related strand of literature emphasizes the role of unobservable innate ability in

selection and the sectoral productivity gap (e.g., Young, 2013). Herrendorf and Schoellman
(2018) document large sectoral gaps in wages and school years for a sample of 13 countries.
They show that Mincer returns to schooling are higher in nonagriculture than in agriculture
and argue that this is mostly explained by workers with higher abilities selecting into
nonagriculture, rather than by nonagricultural technology featuring greater human capital
intensity. Harmory et al. (2021) use individual-level panel data on Indonesia and Kenya
and find that, in both countries, the sectoral wage gap can be significantly reduced when
individual fixed effects are included. Both papers, using a small subsample of “movers”
from agriculture to nonagriculture, find that the individual gain in earnings by switching
the sector is modest, and thus conclude that the reallocation barrier is small.

My paper, on the other hand, integrates a health channel, with two key elements dif-
fering from their papers. First, my paper highlights the gender and sectoral differences in
the health intensity in production technologies, which are ignored in their papers (though
Herrendorf and Schoellman (2018) recognize the differences in the human capital intensity
across sectors). These differences can be important in explaining the sectoral productiv-
ity gap for an economy heavily populated with less-healthy, agricultural workers (and, in
particular, female agricultural workers). Second, my paper considers a gender-specific nona-
gricultural barrier, while their papers ignore the heterogeneity in the reallocation barrier.
As a result, their estimated “barrier” using the wage data of movers may be biased downward
due to a selection issue.

This paper is also closely connected to the literature on gender differences in human
capital, health, and productivity, and their implications for economic development. In
particular, it is well recognized that women have less physical strength than men but have
comparable intellectual abilities. The study most relevant to my paper in this line is Pitt,
Rosenzweig, and Hassan (2012). They not only document evidence on differential returns
to health on schooling and on different types of work between genders, but also construct
a Roy-type model with a similar structure as mine to guide their estimation. The main
difference between my paper and theirs is that, they concentrate on estimating the gender
differences in the impact of body-mass endowment on physical strength, and on education
and occupational choices at the individual level. My study is motivated by theirs but
switches the focus toward the aggregate implications. By embedding individuals’ decisions
on health, education, and sectoral occupation in a general equilibrium framework, my
paper generates predictions on cross-sectional labor allocation and aggregate productivity.
Moreover, the quantitative model is useful for evaluating various policies and for providing
insight into how the gender-health channel shapes policy effects on the aggregate economy.
My counterfactual analysis indicates that the policy effects in general equilibrium versus in
partial equilibrium can diverge.
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Other research along this line includes Galor and Weil (1996) who model gender differ-
ences in the same two dimensions of labor inputs (i.e., brawn and brain) and argue that
capital accumulation raises women’s relative wages, since capital is more complementary to
intellectual inputs than to physical inputs. Rendall (2017) develops a quantitative general
equilibrium model that features women’s comparative advantage in the brain dimension
and shows that technical changes that lead to an increased demand for intellect along with
an increased demand for higher education explain much of the rise in the female labor force
participation, the reversal of the gender education gap, and the closing of the gender wage
gap in the US over the past decades.5

Other studies focusing on gender inequality and economic growth indicate a negative and
two-way relationship between the two (Goldin, 1990; Lagerlöf, 2003; Doepke and Tertilt,
2009; Esteve-Volart, 2009). Hsieh et al. (2019) claim that the improved allocation of talent
in the US, thanks to reductions in labor market frictions and education barriers against
women and blacks, accounts for roughly two-fifths of the growth of aggregate output per
person over the last five decades.6

Furthermore, this paper is linked to the literature on structural transformation and,
particularly, to the studies that document the role of education policy in this process (Caselli
and Coleman II, 2001; Porzio, Rossi, and Santangelo, 2022; Cheung and Yao, 2023). I
also owe insights to research on the role of women’s empowerment policies in economic
development (see a review in Duflo, 2012). My paper adds to this literature by comparing
the cost-effectiveness of a variety of health and education policies, and by shedding light
on the choice between a gender-specific policy and a universal policy.

The paper proceeds as follows. Section 2 presents the general equilibrium model featur-
ing the gender division of labor. Section 3 presents the calibration of the model, followed
by counterfactual analysis in Section 4 and policy experiments in Section 5. Section 6
concludes.

2 Model

To investigate the aggregate implications of the differential returns to health by gender, I
construct a two-sector general equilibrium model with overlapping generations of hetero-
geneous individuals who make decisions concerning investment in health and education as
well as the employment sector. Good health lowers mortality, improves learning, and raises
workers’ productivity. Individuals are heterogeneous in gender and initial human capital
endowment. The agricultural technology is more health intensive for men than for women,
implying a higher return to health for men in agriculture. In addition, I assume that women

5Moreover, Becker et al. (2010) find that it is primarily differences in the distribution of noncognitive
skills between men and women that explain the overtaking of men by women in higher education in the
last few decades, rather than a larger benefit of college for women.

6See also Blau and Kahn (2017) for a review of explanations of the gender wage gap.
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face a nonagricultural gender barrier.

2.1 Environment

2.1.1 Preferences and demographics

Individuals live for three periods. In the young period, they invest in health and education;
in the adult period, they choose between agriculture and nonagriculture and work; and in
the old period, they continue to work in the same sector.7 Individuals derive lifetime utility
from consumption of both agricultural and nonagricultural goods:

U = u(ca,0, cn,0) + ��g(h)u(ca,1, cn,1) + �
2
�g(h)

2
u(ca,2, cn,2) (1)

where
u(ca,t, cn,t) = ⌫log(ca,t � c) + (1� ⌫)log(cn,t) (2)

is the flow utility at period t,8 ca,t (cn,t) is consumption of agricultural (nonagricultural)
goods, ⌫ indicates relative preferences for agricultural goods, and the subscript t = 0, 1, 2

denotes the period of life. In equation(1), � is the discount factor and �g(h) the survival
probability (conditional on survival in the previous period) which depends on health capital
(h) and satisfies �0g(h) > 0. I allow �g(h) to differ across genders (where the subscript g

denotes the gender: g 2 {M,F}) to capture factors other than health that cause differential
life expectancy between men and women.

I normalize the population size of each generation at the young period to one, of which
half is male and half female, and then only a fraction, �g(h) and �g(h)2, of the population
will survive into the adult and old periods for each gender. I also assume the total time
endowment of an individual at each period to be one.

2.1.2 Health and human capital formation

Individuals build up their health capital, h, during the young period. Let xP denote
the private health investment made by an individual and xE denote the public health
investment received by the individual, during the young period (all goods investments
are in units of nonagricultural goods). Health production takes the Cobb-Douglas form,
where private and public health expenditures are complementary. While in reality the
two may be substitutes in some cases, public health investment plays a crucial role in
promoting medicine technology, developing medical professionals, and building healthcare
facilities and sanitization services, which cannot be easily substituted by private investment.
Moreover, in developing countries where infectious diseases are pervasive, effective public

7I divide an individual’s lifetime into three periods instead of two for quantitative purposes; the three
periods refer to ages 0–20, 21–40 and 41–60.

8In the calibration, I set a sufficiently large scale of TFP to ensure flow utility to exceed zero, so that
longevity increases lifetime utility.
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health measures can generate large positive externalities in curbing disease transmission,
enhancing private investments. Thus, I specify an individual’s health capital as

h = h0
⇥
Bx

↵1
E (b+ xP )

↵2
⇤

(3)

In equation(3), h0 is the initial endowment of health capital which is assumed to be ho-
mogeneous across individuals. B > 0 determines the efficiency of health production, which
can be affected not only by the medicine technology available to a country, but also by
environmental factors such as geography and climate, and by social norms, policies and
institutions, including the way public health funding is allocated across programs and the
degree of corruption. ↵1, ↵2 > 0; and ↵1+↵2 < 1 implies diminishing returns to health in-
vestment. b > 0 captures the notion that, even if private health expenditure is zero (which
may be common in poor countries), an individual would still benefit from public health
investment.9

Human capital (or skill), also formed during the young period, is given by

z = z0(1 + ⇢h
✓1e

✓2m
✓3) (4)

where z0 indicates the initial (non-health) human capital which is heterogeneous across
individuals and is drawn from a distribution with cdf F (z0); e denotes the amount of time
allocated to education and m the goods investment in education during the young period.
Equation(4) says that human capital formation requires three complementary inputs, health
(h), time (e), and goods (m), where ⇢ measures the efficacy of human capital investment.
✓1, ✓2, ✓3 2 (0, 1), and ✓1 + ✓2 + ✓3 < 1 captures diminishing returns to the investment.
The inclusion of both time and goods inputs in human capital production is common in
the macro literature (e.g., Manuelli and Seshadri, 2014; Cordoba and Ripoll, 2013), as
the time input captures the opportunity cost of education (i.e., foregone wages) and the
goods input captures an intertemporal tradeoff in consumption. Some studies also include
health capital in the human capital accumulation model to highlight its indispensable role
in learning (e.g., Ashraf, Lester, and Weil, 2008; Manuelli and Yurdagul, 2021).

2.1.3 Production

There are two production sectors in the economy, agriculture (a) and nonagriculture (n).
While an adult can choose the sector, a young individual is only allowed to work in agri-
culture.10 I abstract from labor force participation decisions for the adult and old periods
by assuming that all individuals work from middle age. A middle-age adult’s output when

9Alternatively, b can be thought of as the part of subsistence consumption necessary for life.
10This restriction well applies to low-income countries such as those in Africa, which are the focus of this

paper. According to an International Labour Organization (ILO) report (2017), child labor in Africa works
predominantly in agriculture.
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working in each sector is given by

a :ya,g,1 = A⇣gh
�g (5)

n :yn,1 = Ah
µ
z
1�µ (6)

Note that health capital enters the production function of both sectors because better health
converts to higher labor productivity in different dimensions, namely, physical strength
and mental health. While the former directly contributes to agricultural productivity, the
latter is more relevant to nonagriculture. In equations (5) and (6), A denotes economy-
wide efficiency (TFP) and ⇣g gender-specific agricultural productivity, with the subscript
g indicating gender. I assume that agriculture is brawn-based, and thus only requires
health capital as the input. This assumption is motivated by the fact that, in low-income
economies, traditional technology is widely used in agriculture for which brawn is the major
input.11 Important features of the agricultural technology include the following. First,
men enjoy higher productivity than women (i.e., ⇣M > ⇣F ), conditional on the health
factor, reflecting the absolute advantage of men in agricultural work due to larger physical
strength.12 Second, the health intensity of production is higher for men than for women
(i.e, �M > �F ), motivated by the evidence from Pitt, Rosenzweig, and Hassan (2012) that
improved health implies increased physical strength for men more than for women. This
agricultural technology implies that a general improvement in health would raise both the
absolute and the comparative advantages of men in agricultural production.13 In addition,
I assume that �M , �F 2 (0, 1), implying diminishing returns to scale in agriculture, given
a fixed supply of production factors such as land. Nonagricultural technology, on the other
hand, exhibits constant returns to scale (CRS); it requires both health and human capital
and is assumed independent of genders. I use nonagricultural goods as the numeraire and
thus investments in health and education are both in units of nonagricultural goods.

For young individuals, agricultural productivity is a fraction ⌘ 2 (0, 1) of that of a
comparable adult, since the young generally have less physical strength than adults and
are more vulnerable to exploitation.14 In addition, let  denote the total amount of time
available for a young individual to work or study;  < 1 because a very young child can
do neither. Hence,  � e is the time allocated to work once the decision on e is made. A

11In order to generalize this study to higher-income economies, the agricultural technology should reflect
the demand for other factors, such as capital and education.

12Pitt, Rosenzweig and Hassan (2012) document that, in Bangladesh, 40% of men in a random sample
of adults had a stronger grip than the strongest woman, and that the average female-to-male grip strength
ratio is about 0.65.

13Studies show that there is a gender labor division within agriculture. For example, Foster and Rosen-
zweig (1996) document that, in many developing countries, most men do the plowing, while most women
do the weeding. I abstract from within-sector labor division and focus on sectoral aggregates.

14One may also think of the relatively low productivity of the young in terms of health capital, h, which
is not fully developed before the end of the young period.
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young individual’s agricultural output is thereby

ya,g,0 = ( � e)⌘A⇣gh
�g (7)

An old individual continues to work in the same sector, but the output is a fraction
� 2 (0, 1] of what is produced in middle age as health and human capital depreciates:15

a :ya,g,2 = �A⇣gh
�g (8)

n :yn,2 = �Ah
µ
z
1�µ (9)

In the steady state, the aggregate output of the two sectors at a given time period is as
follows:

Ya =

Z
ya,g,0,idi+

Z

i2⌦a

�(hi)ya,g,1,idi+

Z

i2⌦a

�(hi)
2
ya,g,2,idi (10)

Yn =

Z

i2⌦n

�(hi)yn,idi+

Z

i2⌦n

�(hi)
2
yn,idi (11)

where ⌦a(⌦n) denotes the set of the population working in agriculture (nonagriculture).

2.1.4 Barrier, income and budget

Wage income depends on marginal revenue product. Women, however, face a barrier in the
nonagricultural sector, which is modeled as a wedge of income. This can be viewed as a
tax on women’s nonagricultural income with the tax revenue discarded. The assumption of
a nonagricultural gender barrier is motivated by the broad literature on gender inequality
and discrimination against women in the labor market, and, in particular, by Lee (2016),
who finds that the relative friction against women in the nonagricultural sector is negatively
associated with a country’s income level. Using nonagricultural goods as the numeraire and
denoting the price of agricultural goods in period t as pa,t, the wage income at period t

(t = 1, 2) for worker i of gender g is

wg,t =

8
<

:
pa,tya,g,t if i 2 ⌦a

yn,t(1�  · 1g=F ) if i 2 ⌦n

(12)

where  2 [0, 1] measures the degree of the nonagricultural gender barrier, and 1g=F is the
indicator of being female. For the young, since they can only work in agriculture when not
going to school, they receive the wage income wg,0 = pa,tya,g,0. As the sectoral wage depend
on gender, age, health and human capital, I denote them as wa,g,t(h) and wn,g,t(h, z) for

15I do not model the depreciation of health and human capital directly but allow it to be captured by a
productivity loss measured by �. The assumption that � 2 (0, 1] may only apply to low-income countries
where people have low life expectancy on average, and their productivity may depreciate relatively quickly
after middle age, while in high-income countries, such as the US, an average worker typically reaches peak
lifetime income in his/her early 50s (Lagakos et al., 2018).
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agriculture and nonagriculture.
Moreover, I assume that public health expenditures are financed through a lump sum

tax, ⌧ , and that there is no intertemporal borrowing constraint. Thus, the intertemporal
budget constraint for an individual in the steady state equilibrium (where pa,t = pa for all
t) is

xP +m+ paca,0 + cn,0 + �(h)
paca,1 + cn,1

1 + r
+ �(h)2

paca,2 + cn,2

(1 + r)2
= w0 � ⌧ +

�(h)w1

1 + r
+
�(h)2w2

(1 + r)2

(13)

(I omitted the subscript g here to ease the notational burden.) That is, the discounted
present value of lifetime consumption plus goods investments in health and education equal
the discounted present value of lifetime (after-tax) income.

2.2 Optimization and equilibrium

2.2.1 Optimization

In this model economy, an individual maximizes lifetime utility by choosing the level of
health and education investments in the young period and the sector in which to work in
the adult period, as well as consumption of agricultural and nonagricultural goods in all
periods. The problem can be solved in two steps. First, solve for the optimal level of health
and education investment and consumption, given the sectoral decision of an individual
with initial ability z0, and derive the lifetime utility V (z0; a) and V (z0;n) associated with
each sector. Second, compare V (z0; a) and V (z0;n) to determine the optimal sector.16 The
full characterization of the model is presented in the Online Appendix. Below, I examine
an individual’s decision-making in the adult period to offer some insight on sectoral choice.

In the adult period, the individual chooses the sector, given health and human capital.
He/she chooses nonagriculture if and only if

wn,1 +
�(h)wn,2

1 + r
> wa,1 +

�(h)wa,2

1 + r
, (14)

where wa,t (wn,t) denotes the agricultural (nonagricultural) wage. In the steady state
equilibrium, where prices are constant, equation(14) is equivalent to wn,1 > wa,1; that is,

h
µ
z
1�µ(1�  · 1g=F ) > pa⇣gh

�g , (15)

which can be rewritten as
z
1�µ

h�g�µ
� pa⇣g

1�  · 1g=F
. (16)

Equation(16) is intuitive. For a given individual, the left-hand side reflects (non-health)
16I assume that an individual stays in agriculture when he/she is indifferent between the sectors.
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human capital relative to health capital (when �g > µ), and the right-hand side reflects
price- and barrier-adjusted relative agricultural productivity. Thus, when �g > µ, the
individual chooses nonagriculture if his/her human capital is sufficiently high relative to
health capital, while when �g < µ, an improvement in health capital increases the likelihood
of choosing nonagriculture. For women, the lower the barrier in nonagriculture, the more
likely they are to select that sector.

Then in the young period, conditional on the decision rules in the adult period, the indi-
vidual invests in health and education that maximizes lifetime utility given by equation(1),
subject to the budget constraint and technologies of health and human capital formation
(equations (13), (3), and (4)). It turns out that individuals with higher initial endowment
of human capital, z0, are more likely to work in nonagriculture, due to their advantage
(both absolute and comparative) in accumulating human capital.

2.2.2 Market clearing conditions

Assuming that agricultural goods can only be used for consumption, whereas nonagricul-
tural goods can be used for both consumption and investment, the goods market clearing
conditions in a steady state equilibrium can be written as

Z
ca,0,idi+

Z
�(hi)ca,1,idi+

Z
�(hi)

2
ca,2,idi = Ya (17)

and Z
(cn,0,i + xPi +mi)di+

Z
�(hi)cn,1,idi+

Z
�(hi)

2
cn,2,idi+ xE = Yn (18)

The labor market clearing condition of the two sectors are

Na =

Z
( � ei)di+

Z

i2⌦a

�(hi)di+

Z

i2⌦a

�(hi)
2
di (19)

and
Nn =

Z

i2⌦n

�(hi)di+

Z

i2⌦n

�(hi)
2
di, (20)

where Na and Nn denote the demand for labor in agriculture and nonagriculture, respec-
tively.

2.2.3 Steady state equilibrium

Definition: A steady state competitive equilibrium is a set of allocations for each individual
{(ca,t,cn,t)t=0,1,2, xP , m, e} and a set of prices {pa,wa,g,t(h), wn,g,t(h, z)} such that, given
prices, human capital and health capital formation technology (equations(4) and (3)), and
the distribution of initial human capital F (z0):
i) each individual chooses {(ca,t,cn,t)t=0,1,2, xP , m, e} and sector to maximize lifetime utility
given by equation(1);
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ii) the goods market and labor markets clear; that is, equations(17)–(20) hold;
iii) the government budget is balanced; that is, xE = ⌧ ; and
iv) the distributions of (h, z, g) within and across sectors are stationary.

3 Calibration

I now calibrate the model for Kenya, a typical SSA country, which is used as the benchmark
economy in this study. Then I recalibrate a set of country-specific parameters for Mauritius,
a relatively rich SSA country for comparison. I calibrate both economies in steady state
equilibrium.

3.1 Baseline Calibration

The main strategy for calibrating the benchmark economy is to first set the values of some
parameters directly using estimates from the literature or data, and then to calibrate the
remaining parameters within the model, which is simulated for 100,000 individuals of each
gender to match key data moments of Kenya. The three periods of an individual’s life
refer to ages 0–20, 21–40, and 41–60. Below are the main steps for calibrating the Kenyan
economy.

To calibrate the distribution of the initial endowment of human capital, first, I assume
that the initial human capital z0 follows a Weibull distribution with cdf F (z0) = 1� e

�z� ,
where � is the shape parameter with a smaller value indicating a larger dispersion of initial
ability.17 I assume that the distribution is identical for both genders. Ideally, � would be
calibrated to fit the wage distribution of Kenyan data. However, given that such data are
unavailable for using as a wage distribution for this study,18 I set � = 2.7 to match the
variance of log wages of about 0.2, estimated from the US wage distribution by Lagakos and
Waugh (2013), since income distribution (measured by Gini coefficient) is highly comparable
between the US and Kenya.19 Next, given F (z0), I discretize the space of z0, assume the
minimum z0 to be 0.01 and the maximum 2.05, which is the value at the 99.9 percentile of
the distribution, and set the interval of the z0 space to be 0.01. This gives 205 values of z0
in total. Then I simulate this distribution for 100,000 individuals of each gender and use
them as the agents of the model economy.

For health and mortality parameters, I normalize the initial health capital h0 to one and
assume the gender-specific survival function to be �g(h) =

q
1� Dg

h , where Dg (g 2 {F,M})
are to be calibrated within the model. Note that Dg captures mortality risk from causes
other than health capital; it is not only heterogeneous across genders due to biological or

17Extreme value distributions are widely used for income, wealth, ability, or productivity distributions
in the economics literature.

18The individual-level data used by Harmory et al. (2021) contain too large a fraction of nonagricultural
workers (85% in KLPS-2) and is therefore unsuitable for drawing a wage distribution for this study.

19The Gini coefficient of income is 41.2 and 40.8, respectively, for the US and Kenya (based on 2015 data
from the World Bank).
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behavioral differences, but also heterogeneous across countries as a result of differential
social environments, availability of life-saving technology, culture-related behavior, and so
forth. The functional form of � implies that the adult mortality rate (AMR) is equal to Dg

h

for an individual of gender g and health h. Turning to the health formation parameters in
equation(3), I normalize B = 1 and set ↵2 = 0.133, the latter corresponding to the elasticity
of body mass endowment (i.e., weight-to-height ratio) to calorie intake estimated by Pitt,
Rosenzweig, and Hassan (2012); this value is also consistent with Hall and Jones (2007),
who estimate the elasticity of health status to health input to be 0.042–0.4. I leave ↵1, the
elasticity of health capital to public health expenditure, to be calibrated in the model. I
also set b = 1; that is, for individuals whose private health expenditures are zero, health
capital is determined as h = h0Bx

↵1
E .

For the human capital production function, I calibrate ✓1, elasticity of human capital
production to health capital, based on Ashraf, Lester, and Weil (2008), who estimate the
response of human capital accumulation to the decline of adult mortality rates using data
from Sri Lanka. Specifically, they estimate that when the adult (annual) mortality rate
falls from 0.00972 to 0.00393 (which corresponds to a fall of AMR from 0.356 to 0.162 as
defined in my study), the implied change in schooling is 0.386 years, and the implied change
in human capital is 3.90% for countries with initial years of schooling in the range [4, 8],
which is the case for most SSA countries, including Kenya. I also back out the percentage
change in health capital, h, from the change in AMR, and then compute ✓1 = 0.0328.20 I
set ✓2 = 0.428 and ✓3 = 0.488, based on the estimates from Manuelli and Yurdagul (2021),
and leave ⇢ to be calibrated in the model.

For the preference parameters, I set the annual discount factor to 0.985, broadly con-
sistent with the literature; converting it into 20 years gives � = 0.739. For ⌫, I follow
Restuccia, Yang, and Zhu (2008) and Lagakos and Waugh (2013) and set ⌫ = 0.005, which
implies a long-run agricultural employment share of about 0.5%.

Turning to production, I normalize TFP, A, to 10 and gender-specific agricultural pro-
ductivity for males, ⇣M , to 1, leaving the female agricultural productivity parameter, ⇣F ,
to be calibrated in the model.21 I set ⌘, the relative child labor productivity in agriculture,
to 0.5, as the International Labour Office (ILO, 2007) documents that the child labor wage
relative to adults’ ranges from 1/6 to 2/3 in the surveyed countries. I set  = 0.7, since
the age for starting schooling in Kenya and many other countries is around six, which is
also about the age when children in low-income countries start to share the household work
burdens. For the relative productivity of the elderly, I set � = 1, as Lagokos et al. (2018)
estimate that the lifecycle wage profile is quite flat after the middle age in low-income

20Specifically, using numbers from Ashraf, Lester and Weil (2008), we have h2�h1
h1

=
D

AMR2
� D

AMR1
D

AMR1

=

1
AMR2

� 1
AMR1

1
AMR1

= 1.1903 and z2�z1
z1

= 0.101 ⇤ 0.386 = 0.0390. Thus, ✓1 = z2�z1
z1

/h2�h1
h1

= 0.0328.
21Note that we need a sufficiently large scale of TFP to ensure flow utility exceeds zero, so that longevity

enhances lifetime utility.
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countries.
Now 11 parameters remain to be calibrated within the model: c̄, DM , DF , ⇢, xE , ↵1,

⇣F , �M , �F , µ and . They are calibrated jointly to match a set of 11 targeted moments
for Kenya: the agricultural employment share of the workforce (agremp) and of the female
workforce (agrempF ), the nonagriculture-to-agriculture wage ratio (wn

wa
), agricultural gen-

der wage gap ( wa,F

wa,M
), public and private health expenditure to GDP ratios (XP

Y , XE
Y ), adult

mortality rates of the two genders (AMRF , AMRM ), education expenditure-to-GDP ratio
(MY ), and average years of schooling of the two genders (schyrF , schyrM ).

Some targeted moments deserve explanations. First, the sectoral wage gap (wn
wa

) is
computed based on Hamory et al. (2021), who estimate nonagricultural wage premium,
wn
wa

, to be 1.6 using Kenyan longitudinal data. Second, regarding the agricultural gender
wage gap, there are no micro-data based estimates for Kenya; there are, however, estimates
for other developing countries. For example, Hertz et al. (2008) estimate that the gender
wage ratio (defined as female-to-male wage ratio) in the rural areas to be 0.56 for Ghana,
0.70 for Malawi, and 0.87 for Nigeria; Mahajan (2017) estimates the agricultural gender
wage ratio to be 0.70–0.74 in India. In addition, Pitt, Rosenzweig, and Hassan (2012)
estimate that the female-to-male grip strength ratio is 0.65. Based on these estimates, I
choose the targeted agricultural gender wage ratio to be 0.7 for Kenya. Third, average years
of schooling for each gender are taken from the Barro-Lee education attainment dataset for
the year 2005 (for population above age 25), and all the remaining targeted moments are
sourced from WDI.

While the 11 parameters are calibrated jointly, some of them are more relevant to a
certain set of targets. For example, c̄ is calibrated particularly to target the agricultural
employment share and  targets the agricultural employment share of female; �F and �M
matter a great deal for gender sectoral employment share and wage gap; ⇢ is calibrated to
education expenditure share, and ↵1 and xE to the private and public health expenditure
shares.

Table 1 presents the parameterization. Notably, agricultural technology exhibits higher
return to health for men than for women, with the share of health in agricultural pro-
duction being 0.64 for men and only 0.21 for women. This aligns with empirical evidence
from Pitt, Rosenzweig, and Hassan (2012), which indicates that improved health results in
considerably greater increases in physical strength for men than for women. The gender
disparity in health intensity in agriculture, combined with the lower female-specific agricul-
tural productivity (⇣F = 0.67), implies that men possess both a comparative and absolute
advantage in agricultural production. Furthermore, the nonagricultural health share is
lower than the agricultural health share for men but higher than the agricultural health
share for women. This parameterization implies that improved health can lead to marginal
increases in women’s nonagricultural employment more than for men’s, which is consistent
with the empirical evidence mentioned in Section 1.
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Two further remarks are in order. First, the share of health in agriculture (gender
average) is 0.43, closely aligning with Restuccia, Yang and Zhu (2008) and Adamopoulos et
al. (2022), who assign 0.42 and 0.46, respectively, as the agricultural labor share. Second,
my estimate of the elasticity of health production to public health expenditure, denoted
↵1, is equal to 0.23, which is near the lower bound of estimates from Hall and Jones (2007)
for the very young and middle-aged.

Table 2 compares the targeted moments between the model and the data, demonstrating
a good fit of the model. Specifically, the model predicts that the majority of the Kenyan
workforce (58%) is engaged in agricultural production, and this proportion is even larger
among females (64%). The sectoral wage ratio is approximately 1.6, and the agricultural
gender wage ratio is around 0.7. Men have more years of schooling than women but also
have a higher adult mortality rate.

Table 1. Parameterization of the Benchmark Model
A. Predetermined

parameter value target

discount factor � = 0.739 preset
utility weight of agr. cons. ⌫ = 0.005 literature
initial h.c. distribution � = 2.7 literature
health production B = 1, ↵2 = 0.133 normalized; literature
human capital production ✓1 = 0.033, ✓2 = 0.428, ✓3 = 0.488 literature, computed
TFP A = 10 normalized
male agr. productivity ⇣M = 1 normalized
youth/elderly production  = 0.7, ⌘ = 0.5, � = 1 literature

B. Calibrated within the Model

parameter value target

subsistence cons. c̄ = 2.72

jointly match agremp,
agrempF , wn

wa
, wa,F

wa,M
,

XP
Y , XE

Y , M
Y , AMRF ,

AMRM , schyrF ,
schyrM

mortality DM = 0.31, DF = 0.25

human capital production ⇢ = 0.43

health production ↵1 = 0.23, xE = 0.45,

agr. production
�M = 0.64, �F = 0.21,
⇣F = 0.67

nonagr. production µ = 0.31

gender barrier  = 0.28
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Table 2. Model Fit: The Benchmark Economy

target data model

agremp 0.58 0.58
agrempF 0.65 0.64
wn
wa

1.60 1.62
wa,F

wa,M
0.70 0.69

XP
Y (%) 2.73 2.73
XE
Y (%) 2.52 2.52
M
Y (%) 6.22 6.18
AMRM , AMRF 0.43, 0.37 0.43, 0.38
schyrM , schyrF 6.97, 4.71 8.33, 4.17

3.2 Calibration of the Mauritian economy

Based on the calibration above, I recalibrate a set of 7 country-specific parameters for Mau-
ritius, a relatively rich country in the SSA, taking values of other parameters and the initial
distribution of idiosyncratic human capital endowment from the benchmark economy.22 The
country-specific parameters are TFP (A), health production efficiency (B), public health
expenditure (xE), human capital production efficacy (⇢), sectoral gender barrier (), and
mortality parameters (DM , DF ). They are calibrated jointly to match the following seven
targeted moments of Mauritius: agricultural employment share (agremp) and that of fe-
male workers (agrempF ), public health expenditures as a share of GDP (XE

Y ), education
expenditure to GDP ratio (MY ), average years of schooling (schyr) and adult mortality rates
of the two genders (AMRF , AMRM ).

Table 3 displays the parameterization of the Mauritius model. When comparing the
two countries, note that Mauritius has a TFP more than double that of Kenya; it also has
higher health production efficiency and higher public health expenditure, but lower human
capital production efficacy and higher exogenous mortality. Table 4 demonstrates that,
with these parameters, the model fits the data well.

22Mauritius is one of the richest countries in SSA, with GDP per capita about six times that of Kenya.
Its most important industries include financial and business services, and information and communication
technology. Moreover, I do not use other relatively rich SSA countries, such as South Africa or Botswana,
for this analysis because both countries experienced severe HIV/AIDS epidemics during the 1990s and
2000s, which led to a dramatic increase in mortality among young adults. Such an epidemic has distinct
implications for youth behavior, health, and mortality compared to other diseases, making it less suitable
for use in this research (see, for example, Yao (2022) that focuses on HIV/AIDS and women’s fertility and
education in Africa).
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Table 3. Parameterization of the Mauritius Model

parameter value target

TFP AMU = 24.28

jointly match agremp,
agrempF , XE

Y , M
Y , schyr,

AMRF , AMRM

health production BMU = 3.72, xE,MU = 1.24

human capital production ⇢MU = 0.12

mortality DF,MU = 0.33, DM,MU = 0.80

gender barrier MU = 0.46

Table 4. Model Fit: The Mauritius Economy

target data model

agremp 0.10 0.15
agrempF 0.09 0.09
XE
Y (%) 1.77 1.72
M
Y (%) 3.63 3.40
schyr 7.84 8.53
AMRM , AMRF 0.22, 0.11 0.22, 0.10

3.3 Model validity

To check the validity of the calibrated model, I compare the model-based Mauritius-to-
Kenya labor productivity ratio to the data, since they are not targeted moments for my
calibration. Specifically, I compute the ratios of agricultural output per worker, nonagricul-
tural output per worker, and GDP per worker between the two countries from the model
and compare them with the data in Table 5. As can be seen, the model explains 47%
of the agricultural labor productivity difference, 61% of the nonagricultural labor produc-
tivity difference, and 52% of the aggregate labor productivity difference between the two
countries.

Table 5. Productivity Differences: Data vs. Model

data model % explained

agriculture 9.52 4.50 47
nonagriculture 4.62 2.81 61
aggregate 7.04 3.63 52

Note: The aggregate productivity difference ( yMU
yKE

⌘ pa,MUyqa,MU+yqn,MU

pa,KEyqa,KE+yqn,KE
) is defined as the ratio of

GDP per worker between Mauritius and Kenya. Sectoral productivity differences ( yqa,MU

yqa,KE
and yqn,MU

yqn,KE
) are

the ratios of sectoral output (i.e., quantity) per worker. GDP per worker data (aggregate and sectoral)
are taken from WDI; the sectoral output per worker ratios are computed from sectoral GDP per worker
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ratios adjusted with the ratio of agricultural-to-nonagricultural relative prices of the two countries. The
agricultural-to-nonagricultural price ratios are taken from Lagakos and Waugh (2013), who construct the
data from the food producer price data in FAO.

To further validate my model, I proceed by utilizing empirical research to extract use-
ful moments for comparison with my model’s predictions. Two empirical studies are used.
The first one is Jayachandran and Lleras-Muney (2009), who estimate the effect of MMR
reductions on girls’ educational attainment in Sri Lanka. They argue that MMR is greatly
influenced by public health policies, as increases in hospital beds, ambulance services, mid-
wives provisions as well as other prenatal and postnatal care services can effectively reduce
MMR (and thereby the female adult mortality rate). To mimic the natural experiment set-
ting used in their paper, I conduct an experiment that increases public health expenditure
xE for women only, which improves their health and lowers their AMR. In order to compare
my estimate with Jayachandran and Lleras-Muney (2009), I choose an increase in xE that
leads to a one-year increase in female life expectancy. To estimate the corresponding change
in AMR, I compute the cross-country correlation between female AMR and life expectancy
using WDI data. This correlation is -0.011, meaning that a one-year increase in female life
expectancy is associated with a 0.011 decrease in AMR. I then search for the value of xE
that leads to such a decrease in female AMR in my model economy; it turns out that an
increase in public health expenditure of about 7% is needed to achieve an additional year
of female life expectancy.

My model predicts that a reduction in MMR equivalent to a one-year gain in female
life expectancy would lead to a relative improvement in women’s health and education
outcomes, reducing their agricultural employment and raising aggregate labor productivity,
albeit modestly. In particular, women’s average years of schooling would increase by 0.12
years, or 2.9%, which is very close to the estimates of Jayachandran and Lleras-Muney
(2009), who find the corresponding figures to be 0.11 years (or 3%).

The second empirical study that I turned to is Porzio, Rossi, and Santangelo (2022)
who, based on a school construction program in Indonesia, estimate the effect of increases
in years of schooling on sectoral employment.23 Given that there are no direct model
parameters equivalent to the policy changes introduced by the reform, I conduct an ex-
periment that offers an education subsidy to young individuals, holding prices constant,
where the amount of the subsidy is set to be proportional to their schooling time.24 My
simulation shows that an extra year of schooling leads to a 6.3 percentage point reduction
in the agricultural employment share of the total workforce. This closely aligns with Porzio,
Rossi, and Santangelo (2022), who estimate that an additional year of schooling reduces
the probability of agricultural employment by 6.3 percentage points.

23Their research essentially follows the seminal work of Duflo (2001). The INPRES school construction
program in Indonesia built 61,000 primary schools between 1974 and 1978.

24In this experiment, for each unit of time an individual spends in school, they receive a subsidy equal
to the average agricultural wage of a young worker.
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4 Counterfactual Analysis

To further explore the health – gender division of labor – productivity mechanism under-
scored in the model, I now present three sets of counterfactual analysis. First, I look into
the impact of health production efficiency on sectoral labor allocation and aggregate pro-
ductivity and compare it to that of TFP. Second, I assess the differences between modeling
an endogenous distribution of individual productivities and simply assuming an exogenous
distribution which is typically done in the literature. Third, I examine the contribution of
various factors to the sectoral wage gap with a decomposition analysis.

4.1 The impact of health production efficiency vs. TFP

How does the efficiency of health production shape health, education, sectoral labor alloca-
tion, and aggregate productivity in Kenya? And how do these effects compare to TFP? To
address these questions, I set the health production efficiency parameter (B) and TFP (A),
one at a time, of Kenya equal to the corresponding values of Mauritius, and compare their
effects on a number of variables. Table 6 (columns 3–4) shows that, while setting health
production efficiency or setting TFP to the Mauritian values have a comparable effect on
the agricultural employment share in Kenya, the former has a larger impact on reducing
female agricultural employment share. This is unsurprising provided that improved health
enhances women’s comparative advantage in nonagriculture and men’s in agriculture.

In addition, while an increase in TFP raises both private health expenditure and educa-
tion expenditure as a share of GDP, due to increased returns to both health and education,
an increase in B raises education expenditure share but lowers health expenditure share.
The former is mainly driven by labor reallocation to nonagriculture where education has
a higher return, while the latter occurs because higher health production efficiency means
relatively low investment is needed given the same return to health. Regarding the gender
gap, increases in both TFP and B slightly improve men’s health relative to women’s health
but reduce the gap in (non-health) human capital.

Turning to labor productivity, while the difference in TFP is responsible for most of the
nonagricultural and aggregate labor productivity gap between Kenya and Mauritius, health
production efficiency is very close to TFP in explaining the agricultural labor productivity
gap between the two countries. These results are primarily driven by the facts that agri-
cultural production is relatively health intensive compared to nonagriculture, especially for
men, and that the increase in TFP induces greater education investment which benefits
nonagricultural production.

Furthermore, I experiment with setting the public health expenditure, xE , of Kenya to
the Mauritian value (see last column of Table 6). This turns out to have a qualitatively
similar (though quantitatively smaller) effect as the increase in B; and this variable will be
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a key component in the policy experiments in Section 5.25

Table 6. Counterfactual: TFP and Health

variables BM TFP (%) B (%) xE (%)

agremp 0.575 -57.8 -59.4 -12.2
agrempF 0.638 -65.4 -84.6 -18.1
XP
Y 2.73% 145.2 -2.2 -0.1
M
Y 6.18% 134.7 100.9 17.4
hM,ave

hF,ave
1.077 1.44 1.2 0.6

zM,ave

zF,ave
1.188 -4.31 -7.8 -1.0

yqa,MU

yqa,KE
4.50 -63.7 -62.6 -12.1

yqn,MU

yqn,KE
2.81 -66.8 -37.8 -6.8

yMU
yKE

3.63 -72.9 -51.2 -11.2

Note: This table shows the results of counterfactual experiments (in percentage change relative to the
benchmark values) when setting the values of A, B, or xE of Kenya to the values for Mauritius. Column
2 shows the values of the variables in the benchmark economy and columns 3–5 show the counterfactual
results. Rows 2–3 show sectoral employment shares of the workforce and of females; rows 4–5 show private
health expenditure and education expenditure to GDP ratios; rows 6–7 show male-to-female average health
capital and human capital ratios; and the last three rows show the Mauritius-to-Kenya ratios of agricultural
output per worker, nonagricultural output per worker, and GDP per worker (PPP-adjusted using Kenyan
benchmark prices).

4.2 Endogenous vs. exogenous distribution of idiosyncratic productivi-
ties

One distinct feature of my model is that the distribution of idiosyncratic productivities is
endogenous, which depends on individuals’ choices of health and education investment, in
addition to initial endowment of ability. This differs from former macro studies on sectoral
allocations which take such distributions as given (e.g., Lagakos and Waugh, 2013; Lee,
2016). In this section, I investigate what differences an endogenous distribution of individ-
ual productivities makes by comparing some counterfactual results between the benchmark
model (“Model 1”) with a model that assumes exogenous distribution of idiosyncratic pro-
ductivities (“Model 2”). In the latter model, all individuals’ human capital (z) and health
capital (h) are fixed to their values of the benchmark economy; individuals only choose

25One might be concerned that once taking into account the labor force participation (LFP) rate (which
is assumed to be one for the middle- and old-aged in the current model), the counterfactual results may
change since cross-country data indicate that the female-to-male LFP ratio and countries’ income level
have a U-shaped relation. To address this concern, I show in the Online Appendix the results of the above
counterfactual experiments, when the female-to-male LFP ratio is assumed to vary with an economy’s
income level. The results are very close to those in Table 6, with a very modest increase in sectoral and
aggregate labor productivity, suggesting that LFP is unlikely to be an important margin for inclusion in
this study.
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sectors, taking their productivities as given. Then I set TFP of Kenya to the Mauritian
value, or set the gender barrier () to zero in the two models, and compare their impacts
on the two model economies.

The results in Table 7 indicate that the differences between the two types of models
are considerable. When TFP of Kenya increases to the Mauritian value, the agricultural
employment share of Kenya drops by 58% in Model 1 but 48% in Model 2. The aggregate
labor productivity of Kenya would increase by nearly three-fold in Model 1 but only by
141% in Model 2. When  is zero, the agricultural employment share drops by 8% and that
of females by 40% in Model 1, compared with respective drops of 3% and 13% in Model 2;
the increase in GDP per worker is 12% in Model 1 compared to only 0.4% in Model 2.

These results are not difficult to explain when we look into the variables related to
health and education in rows 3–6 of Table 7. In Model 1, individuals respond to the
increase in TFP or the decrease in the gender barrier by raising both health and education
investments, generating a large positive feedback to the positive shock, while in Model 2,
there is no such feedback (the reductions in health- and education-expenditure-to-GDP
ratios are purely driven by an increase in GDP). My results suggest that, by ignoring
part of behavioral responses, studies employing an exogenous distribution of idiosyncratic
productivities underestimate the impact of economic factors, such as TFP or labor market
frictions, on sectoral allocation and aggregate productivity.

Table 7. Counterfactual: Endogenous vs. Exogenous Distribution

variables BM
TFP (%)  (%)

endo. exog. endo. exog.

agremp 0.575 -57.8 -47.5 -7.8 -2.6
agrempF 0.638 -65.4 -48.1 -39.7 -12.7
XP
Y 2.73% 145.2 -55.9 46.6 -9.4
M
Y 6.18% 134.7 -55.9 30.2 -9.4
hM,ave

hF,ave
1.077 1.44 0.0 -1.6 0.0

zM,ave

zF,ave
1.188 -4.31 0.0 -23.9 0.0

yqa 6.31 175.6 96.9 12.6 2.1
yqn 13.92 201.1 97.3 5.3 -2.5
y 9.48 278.6 141.2 11.7 0.4

Note: This table shows the results of counterfactual experiments (in percentage change from the
benchmark values) when setting TFP to the Mauritian value or setting the gender barrier () to zero
in the two types of models (columns 3–6). The results of Model 1 are shown in columns 3 and 5, and
those of Model 2 are shown in columns 4 and 6; column 2 shows the benchmark values of the variables.
See an explanation of the variables in the note for Table 6. The last three rows show agricultural and
nonagricultural output per worker, and GDP per worker (PPP-adjusted using Kenyan benchmark prices).
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To further understand whether investment in education or in health plays a greater role
in distinguishing the endogenous distribution from exogenous distribution of individual
productivities, I conduct additional experiments that only fix individuals’ human capital
(z) or health capital (h) to their benchmark values, and see how these partial-endogenous-
distribution models respond to the TFP or  shock.

Table 8 shows the results regarding agricultural employment share and labor produc-
tivity in models with different types of idiosyncratic productivity distributions. It appears
that, under both shocks, the model with an exogenous distribution of z generates an out-
come closer to the one with a full exogenous distribution, while the model with an exogenous
distribution of h tends to be closer to the one with an endogenous distribution of individ-
ual productivities. The reason lies in the fact that nonagricultural production is more
skill intensive; thus, when an economy encounters a shock that favors labor reallocation
toward nonagriculture, say a positive productivity shock or a reduction in distortions, the
response in education investment matters more for labor allocation and productivity than
the response in health investment.26 This result suggests that compared to endogenizing
health, endogenizing education may be a more important dimension for modeling sectoral
allocation and productivity.

Table 8. Exogenous Distribution of z vs. h

TFP (%)  (%)

endo exog exog-z exog-h endo exog exog-z exog-h

agremp -57.8 -47.5 -49.5 -53.6 -7.8 -2.6 -3.9 -7.9
agrempF -65.4 -48.1 -50.7 -56.7 -39.7 -12.7 -15.5 -46.0
yqa 175.6 96.9 103.0 151.9 12.6 2.1 3.9 6.3
yqn 201.1 97.3 105.3 176.6 5.3 -2.5 -3.0 -6.1
y 278.6 141.2 152.5 241.9 11.7 0.4 1.3 1.7

Note: This table shows the results of the counterfactual experiments (in percentage change relative
to the benchmark values) that assume either the distribution of human capital z (columns 4 and 8) or
the distribution of health capital h (columns 5 and 9) is exogenous, when TFP is set to the Mauritian
value (columns 2–5) or when  is set to zero (columns 6–10), and compares the results to models with the
endogenous distribution (columns 2 and 6) and the exogenous distribution (columns 3 and 7) of individual
productivities.

26An exception is the change in nonagricultural output per worker (yqn) under the  shock, where the
model with the exogenous h distribution generates a more negative effect on yqn than the model with the
exogenous z distribution. This is due to a composition effect. When the gender barrier is removed and
education response is allowed for, a large proportion of female workers switch to nonagriculture, including
less productive ones. This drives down the average labor productivity in nonagriculture.
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4.3 Decomposition of the sectoral wage gap

A stylized fact highlighted in the macro-development literature is that a sectoral wage gap,
or nonagricultural wage premium, exists for many countries, and that the gap is especially
large for developing countries. Gollin, Lagakos, and Waugh (2014) argue that, even with
better measures of sectoral labor inputs (such as measures taking into account hours worked
and human capital per worker) and value added, a sizable sectoral wage gap remains.
Herrendorf and Schoellman (2018) consider observed and unobserved differences in workers’
abilities and sectoral differences in human capital intensities in a multi-sector model. Using
the wage changes of US switchers, they find that the “selection view” (i.e., workers with
higher unobserved abilities select into nonagriculture), rather than the “technology view”
(i.e., nonagricultural production is more human capital intensive), explains most of the
observed differences in sectoral wages in the US data. More recently, Hamory et al. (2021)
use long-run individual-level panel data from Indonesia and Kenya and find that accounting
for individual fixed effects leads to a large reduction (67%–92%) in sectoral productivity
gaps.

With these findings in mind, I explore, based on my model, the contribution of various
factors – technology, innate ability, education, health, and labor market friction – to the
sectoral wage gap of Kenya. Specifically, I examine the following six factors, holding individ-
uals’ sectoral choices to be the same as in the benchmark economy: (1) factor intensity – set-
ting the factor intensity of nonagriculture to agriculture (that is, yn,g = Ah

�g); (2) gender-
specific productivity – setting the nonagricultural production function to yn,g = A⇣gh

µ
z
1�µ;

(3) education – setting the education investment of nonagricultural workers to that of agri-
cultural workers (that is, e = m = 0); (4) innate ability – setting the initial human capital
endowment (z0) of nonagricultural workers to the average of agricultural workers; (5) health
– setting the health capital of nonagricultural workers to the average of agricultural workers;
and (6) gender barrier– setting  = 0. For each factor i, I compute the new sectoral wage
gap,

⇣
wn
wa

⌘

i
, and its change from the benchmark value, 4i =

⇣
wn
wa

⌘

BM
�

⇣
wn
wa

⌘

i
, and then

measure the contribution of that factor to the benchmark sectoral wage gap as CONi =
4i
4 ,

where 4 =
P
i
4i.

Table 9 (columns 2–3) shows that differences in innate ability of workers between the
two sectors explain the largest part of the sectoral wage gap (40%), followed by sectoral
differences in technology related to factor intensity (35%), and then by differences in ed-
ucation (26%). Sectoral differences in gender-specific productivity and health capital play
a relatively minor role. In addition, the nonagricultural gender barrier has a negative
contribution by construction, as its elimination would lead to an increase in the female
nonagricultural wage, enlarging the sectoral wage gap.27 Overall, my findings are consis-

27This result is caused by fixing the sectoral labor allocation to the benchmark economy in this experi-
ment. If we re-solve the model in equilibrium, removing the gender barrier would induce more women to
nonagriculture and the sectoral wage gap would shrink to 1.53.
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tent with the literature that suggests that selection based on innate abilities plays the most
important role in explaining the nonagriculture-agriculture wage gap.

Table 9. Decomposition of the Sectoral Wage Gap

⇣
wn
wa

⌘

i
CONi (%) F (%) M (%)

BM 1.62
1. factor intensity 1.09 34.7 29.0 71.0
2. gender-specific prod. 1.43 12.5 100.0 0.0
3. education 1.22 26.4 26.5 73.5
3. innate ability 1.01 40.3 37.3 62.7
5. health 1.60 0.1 -20.0 120.0
6. friction 1.84 -14.6 100.0 0.0

Note: This table shows the sectoral wage gap (in column 2) for the benchmark economy (row 2) and
for the factors (1)–(6) (rows 3–8). Column 3 shows the contribution of each factor to the sectoral wage gap,
with its share of female and male wages shown in columns 4 and 5.

Furthermore, given the gender focus of this study, it would be interesting to ask: Which
gender’s wage distribution matters more for each factor examined above when it comes to
the contribution to the overall sectoral wage gap? To answer this question, I recompute
the sectoral wage ratio for each factor when fixing the wage distribution of one gender at
a time to the benchmark economy. The last two columns of Table 9 show the share of
each gender’s wage distribution in each factor’s contribution to the overall sectoral wage
gap. Apart from gender-specific productivity and labor market friction, which are both
female-specific factors, male wages play a greater role in all factors’ contribution to the
sectoral wage gap than female wages. This is unsurprising since, on average, men are
better-educated, healthier, and more productive in both sectors than women; therefore,
eliminating the sectoral difference of factor intensity, education, innate ability, or health
would have a larger effect on men’s wages, which in turn generates a greater impact on the
sectoral wage gap.

5 Policy Experiments

Health and education have long been the centerpieces of development policies, as they are
not only regarded as goals in their own right but also arguably have significant potential
benefits for economic growth (United Nations, 2015). In addition, many development poli-
cies were specifically designed to target improving the condition of women, such as offering
girls’ scholarships and setting quotas for women in parliament. While policy makers claimed
that such policies, by empowering women and achieving gender equality, could accelerate
economic development, empirical research has found mixed effects (Duflo, 2012).
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To offer new perspective on policy, I conduct experiments that provide health and ed-
ucation subsidies to individuals, based on my calibrated model. In particular, I compare
the impacts of the two types of subsidies to shed light on the relative importance of health
policy, which is the focus of this study. To gain insight into the impact of gender-specific
policy, I implement experiments that subsidize both genders or a specific gender, and com-
pare their effects. Furthermore, in section 5.2, I investigate the differences in policy effects
in general equilibrium versus those in partial equilibrium to gain insight into the discrepancy
between a nation-wide policy and a local policy, such as those in RCTs.

5.1 Health subsidy vs. education subsidy

I conduct two sets of policy experiments that focus on health and education subsidies,
all at the same budgetary cost. The first set of experiments involves increased public
health expenditure (xE), and the second set of experiments involves subsidized education
through an income transfer conditional on school attendance. Since school-attendance-
based education subsidies have been widely implemented and studied in the development
literature, the latter set of experiments serve as a comparison to evaluate the relative
importance of health subsidies. Each set of policies is implemented on three groups of
beneficiaries – all individuals, women only, and men only. Although male-specific subsidies
are uncommon in practice, their inclusion here allows us to draw richer insights on policy
effects.

The first health subsidy experiment involves doubling xE for all individuals. This sets
the budgetary cost for all other experiments, which is around 2% of GDP for each exper-
iment; in the health subsidy experiments, it raises Kenya’s public health expenditure-to-
GDP ratio to 4–5%. This is a reasonable budget, since it is still below that of some SSA
countries and far below the average of OECD countries (which is about 10%). Then in
the second (third) healthy subsidy experiment, only women (men) enjoy additional public
health benefits (i.e., an increase in xE). In the education subsidy experiments, I assume
that the subsidy is proportional to an individual’s education time, e, with the subsidy rate
solved in equilibrium to meet the policy budget. In order to focus on the effects of health
and education subsidies, I abstract from any substitution or income effects of taxation by
assuming that all policies are externally financed (which can be thought of as international
humanity funds for health or education).

Table 10 shows the results. In addition to agricultural employment share and labor
productivity, it also reports the policy effects on schooling years (by gender) and lifetime
utility (by gender and for all). The latter allows us to investigate the welfare implications
of the policies. Several results emerge.

First, the health subsidy effectively raises aggregate labor productivity and reduces
agricultural employment share, especially for women. An improvement in health not only
increases individual labor productivity in both sectors, but also increases women’s compar-
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ative advantage in nonagriculture, inducing a more efficient allocation of (female) labor.28

It is noteworthy that women’s average years of schooling increases relative to men’s in all
three experiments, even when only men are subsidized. This is in line with empirical ev-
idence from various studies that find that improved health benefited women’s education
relative to men’s (Pitt, Rosenzweig and Hassan, 2012; Miguel and Kremer, 2004; Bobonis,
Miguel, and Puri-Sharma, 2006; Field, Robles, and Torero, 2009; Baird et al., 2016).

The health subsidy is, nonetheless, more effective in raising aggregate labor productivity
when offered uniformly to both gender or when targeting men, compared to targeting
women. This is primarily because the (absolute) return to health improvement is higher for
men due to their higher health share in agriculture. Thus, the effect of the health subsidy on
average worker productivity is lower when men are excluded as beneficiaries. Additionally,
since a health improvement in men results in a considerable increase in agricultural labor
productivity, in equilibrium, it eases the subsistence constraint, drives down agricultural
price, and pushes more workers to shift out of agriculture.

Second, when policy subsidizes education, it is most effective in raising aggregate la-
bor productivity when targeting women and least effective when targeting men. This is
mainly because subsidizing women’s education (not men’s) plays a similar role as decreasing
the gender barrier in nonagriculture and, thus, reduces the distortion in labor allocation,
while subsidizing only men’s education exerts an opposite effect. Moreover, despite an
insignificant effect on the agricultural employment share when the policy subsidizes both
genders or women only, women’s average years of schooling increases considerably relative
to men’s. This is consistent with Duflo, Dupas and Kremer (2021), who find that offering
secondary school scholarships to qualified students increased their education attainment
significantly, but these effects were concentrated among women. In addition, the slight
increase in agricultural employment share is mainly due to an equilibrium effect, as bet-
ter education enhances relative productivity of the nonagriculture sector, driving up the
agricultural price. This result also suggests that the education subsidy has a much larger
impact on individuals who are on the margin of whether to continue education than those
on the margin of whether to commence education.29

Third, comparing the two types of subsidies, the health subsidy is more cost-effective
than the education subsidy in elevating aggregate labor productivity and in reducing agri-
cultural employment share. The reason is that two forces are at work when health is

28Even when health subsidies are limited to men, the policy still increases women’s comparative advantage
in nonagriculture.

29The impact of the education subsidy on aggregate labor productivity and on agricultural employment
share may be under-estimated, because of an absence of borrowing constraints in my model. In a study by
Cheung and Yao (2023) where they assume that initial financial wealth constrain individuals’ borrowing
capacity during their schooling period, they find a sizable impact of public education policy on agricultural
employment share and aggregate labor productivity. Given that the focus of this paper is to investigate the
relative importance of a health subsidy (compared to an education subsidy) and that individuals face the
same budget constraint when they make both health and education investment decisions at youth, however,
the lack of borrowing constraints is unlikely to alter the results regarding the relative importance of health
subsidy considerably.
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improved that affect both sectors. On the one hand, better health raises agricultural pro-
ductivity, which eases the subsistence constraint and pushes workers out of agriculture. On
the other hand, it enhances nonagricultural productivity (especially for females, relative to
their agricultural productivity), which pulls workers into nonagriculture. Conversely, the
working of the education subsidy is limited to the nonagricultural sector and thus has a
mitigated impact on labor allocation and aggregate productivity.30

Finally, turning to welfare, a health subsidy is generally more welfare enhancing than
an education subsidy. This is because improved health, versus education, not only has a
larger impact on aggregate labor productivity but also reduces mortality. For example, the
health subsidy that covers everyone reduces AMR by 14% for both genders, which generates
a substantial welfare benefit. Among the three health subsidy experiments, the one that
covers both genders is more welfare enhancing at the aggregate level than those targeting
a specific gender.

Table 10. Policy Experiments (all in %)

variables
health subsidy education subsidy

all fe ma all fe ma

agremp -8.5 -2.8 -10.8 0.1 0.2 2.0
agrempF -12.2 -4.9 -14.4 3.3 -0.6 10.2
schyrF 18.4 25.2 6.0 31.9 52.7 -6.0
schyrM 1.7 0.0 1.7 3.5 -1.9 8.7
yqa 9.1 3.9 11.4 1.3 2.9 -1.1
yqn 5.1 5.8 3.3 3.0 4.0 1.3
y 10.7 6.5 11.0 2.3 3.5 -0.6
UF 14.3 24.0 -1.4 4.5 9.8 1.3
UM 11.6 0.0 17.7 3.3 0.2 4.9
U 12.6 9.3 10.3 3.8 3.9 3.5

Note: This table shows the results of policy experiments (in percentage changes relative to the bench-
mark values). Columns 2–4 show results of increasing public health expenditure for all, for women only, and
for men only; and columns 5–7 show results of subsidizing education for the same three groups. Rows 3–4
show percentage changes in average years of schooling by gender, and the last three rows show percentage
changes in average lifetime utility by gender and for all.

5.2 General equilibrium vs. partial equilibrium

This subsection explores differences in the effects of health and education subsidies between
general equilibrium (GE) and partial equilibrium (PE). While empirical studies, such as

30My finding that a health subsidy is more cost-effective than an education subsidy aligns with Miguel
and Kremer (2004). Based on a deworming program among Kenyan school children, they find that mass
treatment with deworming drugs is considerably more cost-effective than school subsidies in boosting school
participation.
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RCTs, suggest a potentially significant impact of health or education subsidies on education
and labor market outcomes (Duflo, Dupas and Kremer, 2021; Miguel and Kremer, 2004;
Bobonis, Miguel, and Puri-Sharma, 2006; Field, Robles, and Torero, 2009; Baird et al.,
2016), whether such subsidization should be implemented nationwide is often debated in
poor countries. An essential question is whether the local effect of a subsidy in a randomized
field experiment applies to the country level. Understanding the discrepancy in policy effects
between GE and PE (where prices are held constant) is crucial for addressing this question.

Table 11 shows the effects of the same health and education subsidies that cover both
genders as in Section 5.1, but now by GE and PE. Notably, the impact of the health
subsidy on aggregate labor productivity is higher in GE than in PE, while the impact of
the education subsidy on aggregate labor productivity is lower in GE than in PE. Such
a disparity arises from different labor allocations, resulting from different directions in
price changes. In GE, the health subsidy increases the agricultural productivity which
drives down the agricultural price, while the education subsidy increases nonagricultural
productivity (but not agricultural productivity) that drives up the agricultural price; the
former induces labor allocation toward nonagriculture while the latter does the opposite.
These effects are absent in PE. Hence, while GE captures the additional benefit of the health
subsidy in reducing the agricultural employment share through a price adjustment, it makes
the education subsidy less appealing for the same reason (but in opposite direction).

These results suggest that, while local randomized experiments find both health and
education subsidies improve individuals’ education and labor market outcomes, when im-
plemented at the national level, the effectiveness of the health policy would be further
enhanced, while that of the education policy would be mitigated.

Table 11. GE vs. PE (all in %)

variables
health subsidy education subsidy

GE PE GE PE

agremp -8.5 3.2 0.1 -7.9
agrempF -12.2 -2.7 3.3 -2.6
schyrF 18.4 15.1 31.9 41.9
schyrM 1.7 -10.9 3.5 12.2
yqa 9.1 11.4 1.3 0.2
yqn 5.1 9.5 3.0 0.6
y 10.7 8.6 2.3 4.1

Note: This table compares the effects of health and education subsidies (when covering both genders)
in general equilibrium (columns 2 and 4) versus in partial equilibrium (columns 3 and 5).
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6 Conclusion

To explore how health affects aggregate labor productivity through its effect on the gender
division of labor across sectors, I develop a multi-sector general equilibrium model with
heterogeneous individuals who invest in health and education, and choose the sector. A
higher return to health for men than for women in agriculture implies that a general im-
provement in health enhances women’s comparative advantage in nonagriculture, inducing
greater female nonagricultural employment, increasing aggregate labor productivity. The
model is calibrated to two African economies, Kenya and Mauritius; it explains 47% of the
agricultural labor productivity gap, 61% of the nonagricultural labor productivity gap, and
52% of the aggregate labor productivity gap between the two economies.

Counterfactual analysis shows that, while TFP is responsible for most of the aggregate
labor productivity gap between Kenya and Mauritius, health production efficiency is highly
comparable to TFP in explaining differences in agricultural labor productivity and employ-
ment share between the two countries. Moreover, increasing health production efficiency
has a larger impact on reducing the female agricultural employment share than increasing
TFP. Compared to a model with an exogenous distribution of workers’ productivities, my
model featuring an endogenous distribution of individual productivities based on invest-
ment choices predicts a considerably larger impact of TFP and labor market friction on
labor allocation and productivity. Furthermore, a decomposition analysis reveals that in-
nate ability accounts for most of the sectoral wage gap of Kenya, followed by sectoral factor
intensity and education.

Policy experiments show that a health subsidy is more cost-effective than an education
subsidy in raising aggregate labor productivity, in reducing the agricultural employment
share, and in improving general welfare. This is primarily because health policy impacts
both sectors directly – it increases agricultural productivity, eases the subsistence constraint,
and thus pushes workers out of agriculture; and it increases nonagricultural productivity,
which attracts more workers to nonagriculture. In contrast, the working of an education
subsidy hinges on the nonagricultural sector and thus has a limited impact. In addition,
while a health subsidy reduces females’ agricultural employment relative to males’, it is more
effective in improving aggregate labor productivity when covering both genders uniformly
or just men, compared to targeting just women. Furthermore, a comparison of policy
effects between GE and PE suggests that, while RCTs find both local health and education
subsidies effective in improving individuals’ schooling and labor market outcomes, when
implemented at the national level the effectiveness of the health policy is enhanced while
that of the education policy is diminished.
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This appendix consists of three sections. Section A provides micro-level evidence on
the relationship between health and education or sectoral employment, with a particular
focus on the gender differences in these relationships. Section B provides a characterization
of the model, and Section C shows the results of a number of counterfactual experiments
when labor force participation is taken into account.

A. Empirical Evidence

As noted, various empirical studies document that, compared to men, women benefited more
from health improvement in terms of education and labor market outcomes (Pitt, Rosen-
zweig and Hassan, 2012; Miguel and Kremer, 2004; Bobonis, Miguel, and Puri-Sharma,
2006; Field, Robles, and Torero, 2009; Baird et al., 2016). While these studies provided
convincing evidence and have motivated this current study, they typically use data based
on randomized field experiments or local surveys in an individual country. To complement
their analysis, I now look into micro-level data from a broader set of developing countries to
investigate gender differences in the relationships between health and education or sectoral
employment. In particular, I use data from the Demographic and Health Surveys (DHS)
for 33 SSA countries. The dataset contains individual-level information related to educa-
tion and health, along with other demographics.1 I employ individuals’ body-mass index
(BMI) as the measure of health. BMI is a commonly used health measure in development
economics and is found to be significantly and positively associated with living standard,
including nutritional status, in developing countries (Nubé et al., 1998).2

In the following analysis, I run regressions to examine the relationships between health
and years of schooling or sectoral employment, with a particular focus on gender differences
in these relationships. Since BMI at higher levels can be negatively associated with health,
I conduct regressions with samples of different ranges of BMI.

1For each country, I select the year nearest to 2005 with data available. The full dataset contains more
than 160,000 individuals, of which about three quarters are females.

2In rich countries, BMI is often used to define and classify obesity, though.
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Note that the cross-sectional nature of my dataset poses two major limitations on this
analysis. First, I am unable to draw a causal effect from the regressions. Thus, I interpret
the coefficients of health as correlations between health and the dependent variable, rather
than a causal effect of health, and focus on gender differences in these correlations. Second,
the regressions show the relationship between individuals’ current BMI and past years of
schooling. Thus, the BMI measure adopted here can only be viewed as an approximation
of individuals’ BMI at their school age which may be relevant for their schooling decisions.
With these caveats in mind, I explain my regression analysis below.

A.1 Health and education

I begin by examining the relationship between health and education and then compare the
results between men and women. I regress years of schooling (in log) on BMI, controlling
for country, region, area (i.e., urban or rural) and year fixed effects, as well as age and
household wealth. I run these regressions separately for men and women.3 In addition, I
use a sample that contains all levels of BMI and a subsample with BMI below 25, since
BMI higher than 25 may be negatively associated with health.4

Figure A1 displays the regression coefficients of BMI by gender from the regressions.
The point estimates in the top row (labeled “all”) indicates that a larger BMI is associated
with more years of schooling for both genders, regardless of the BMI range. There is little
gender differences in this relation, however, which appears to contradict the theory that
improved health leads to a greater increase in women’s education.

Since the primary focus of this paper is the impact of health on the gender division of
labor between agriculture and nonagriculture, the most relevant population are individuals
with relatively low socioeconomic status. Given that they are more likely to face resource
constraints that influence their sectoral choices, they are situated on the margins of these
decisions. Therefore, I conduct the same regressions using subsamples of individuals with
lower socioeconomic status: those with 4 or fewer years of schooling, those with 6 or fewer
years of schooling, and those with a household wealth index less than or equal to 3.5

The remaining rows of Figure A1 clearly depict a larger coefficient of BMI for women
compared to men when the focus is for the less-advantaged group. This suggests a stronger

3I dropped observations with age below 20, years of schooling above 20, or BMI above 60, and where
women who were pregnant at the time of survey. I include household wealth as a control variable because
the correlation between education and BMI can depend on socioeconomic status. One caveat is that
household wealth in the dataset is an index with five values (from 1 to 5) and measures an individual’s
current household wealth; thus, for married people, it may not well reflect household wealth at the time of
schooling, which is more relevant to their education investment. However, due to the lack of data on income
or wealth, I use this wealth index as an approximation for the socioeconomic status of one’s household at
the time of schooling.

4In a population-based cohort study of 3.6 million adults in the UK, Bhaskaran et al. (2018) discovered
a J-shaped relationship between BMI and mortality hazard, with the lowest all-cause mortality occurring
at a BMI level of around 25.

54 is the median years of schooling of the full sample and 6 is the years of primary school.
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association between health and education for women with low socioeconomic status.

Figure A1. Coefficients of BMI in Schooling Years Regressions

Note: This figure shows the point estimates of the coefficient of BMI (with 95% confidence intervals)
from the following regression: ln(schyr)i = �0 + �1BMIi + �2Xi + ", where the dependent variable is the
log of individual i’s years of schooling, BMIi is the body mass index, and Xi is a set of control variables:
country, region, area, and year fix effects, age, age2, and the household wealth index. The left panel uses
a sample of all levels of BMI, whereas the right panel uses a subsample with BMI below 25. The top row
shows the estimates from the sample with all individuals, while the remaining rows show estimates from
subsamples of individuals with lower socioeconomic status (i.e., years of schooling no more than 4 or 6, or
household wealth index no more than 3). Regression coefficients are presented separately for females and
males.

A.2 Health and sectoral employment

I now examine the relationships between health and sectoral employment. Specifically, I
run OLS regressions, for men and women separately, of individuals’ employment sector (a
dummy variable that equals 1 if he/she works in nonagriculture and 0 otherwise) on BMI,
controlling for country, region, area and year fixed effects, as well as age, household wealth,
and years of schooling. In addition to the full sample, I use subsamples of BMI less than 25
and of different socioeconomic status (measured by years of schooling or household wealth
index).

Across nearly all specifications, the coefficient of BMI is larger and has a higher level
of significance for women compared to men. This indicates that, controlling for education,
healthier women tend to work in nonagriculture, regardless of their socioeconomic status.6

Combined with the findings in the previous subsection, it suggests that health plays a
significant role in shaping the gender division of labor across sectors, both through the
education channel and in its own right.

6The results are qualitatively similar when years of schooling is excluded from the control variables.
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Figure A2. Coefficients of BMI in Sectoral Employment Regressions

Note: This figure shows the point estimates of the coefficient of BMI (with 95% confidence intervals)
from the following regression: occnagr,i = �0 + �1BMIi + �2Xi + ", where the dependent variable is indi-
vidual i’s employment sector, a dummy variable that equals 1 if the individual works in the nonagricultural
sector and 0 otherwise; BMIi is the body mass index, and Xi is a set of control variables: country, region,
area, and year fix effects, and age, age2, years of schooling and household wealth index. The left panel uses
a sample of all levels of BMI, whereas the right panel uses a subsample with BMI below 25. The top row
shows the estimates from the sample with all individuals, while the remaining rows show estimates from
subsamples of individuals with different socioeconomic status (by years of schooling or household wealth
index). Regression coefficients are presented separately for females and males.

In addition, while the regressions above show a significant positive coefficient of years
of schooling (not shown in the figure though), the magnitude of this coefficient is smaller
for women than for men. This implies that, holding other factors constant, a woman is
less likely to work in the nonagricultural sector than a man with the same level of educa-
tion.7 This result suggests the presence of a “barrier” that women encounter in entering the
nonagricultural sector.

B. Model characterization

This section first derives the optimal conditions for a woman’s problem given the sectoral
choice and then shows the optimal sectoral choice. For men, these conditions are identical
except for the agricultural technology (i.e., ⇣g and �g) and the nonagricultural gender barrier
(i.e.,  = 0 for men). The analysis below is based on the steady state equilibrium, so prices
are constant.

7For example, from the regressions using the full sample, the coefficient of years of schooling is 0.012 for
women and 0.018 for men, both significant at 1%.
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Working in agriculture

Suppose a woman with initial human capital z0 works in agriculture from the adult period.
She would not invest in education since its return is zero; thus, m = e = 0. The Lagrangian
is as follows.

L(c, xP , h,�1,�2) =U(c, h) + �1{A⇣Fh�F [ pa,0⌘ +
�(h)pa,1
1 + r

+
�(h)2pa,2�

(1 + r)2
]� ⌧ � xP

� (pa,0ca,0 + cn,0)�
�(h)(pa,1ca,1 + cn,1)

1 + r
� �(h)2(pa,2ca,2 + cn,2)

(1 + r)2
}

+ �2[h0Bx↵1
E (b+ xP )

↵2 � h] (1)

where c = {ca,t, cn,t}t=0,1,2, and �1 and �2 are Lagrangian multipliers associated with the
budget constraint and health capital formation, respectively, and pa,0 = pa,1 = pa,2 = pa

(steady state condition). The first-order conditions (FOCs) are as follows.

ca,0 � c̄ =
ca,1 � c̄

�(1 + r)
=

ca,2 � c̄

�2(1 + r)2
, cn,0 =

cn,1
�(1 + r)

=
cn,2

�2(1 + r)2
, (2)

⌫

pa(ca � c̄)
=

1� ⌫

cn
= �1, (3)

�1 = �2h0B↵2x
↵1
E x↵2�1

P , (> if xP = 0) (4)

[��0(h) + 2�2�(h)�0(h)][⌫log(ca,0 � c̄) + (1� ⌫)log(cn,0) + [��0(h) + 4�2�(h)�0(h)]log[�(1 + r)]

+
1� ⌫

cn,0
{paA⇣F�Fh�F�1[ ⌘ +

�(h)

1 + r
+

�(h)2�

(1 + r)2
+

h

�F
· ( �

0(h)

1 + r
+

2�(h)�0(h)�

(1 + r)2
)]

�[��0(h) + 2�2�(h)�0(h)][pa(ca,0 � c̄) + cn,0]� [
�0(h)

1 + r
+

2�(h)�0(h)

(1 + r)2
]pac̄}

=
1� ⌫

cn,0
· 1

h0B↵2x
↵1
E (b+ xP )↵2�1

(5)

where the last equation has combined (2)–(4). Equation(2) reflects the intertemporal
consumption-saving decisions, equation(3) reflects the relation between agricultural and
nonagricultural consumption, equation(4) links the shadow price of health to that of con-
sumption goods through private health investment, and equation(5) equates the marginal
benefit (LHS) and marginal cost (RHS) of health. Note that the LHS of equation(5) indi-
cates that health benefits one’s life through a number of channels. First, it directly increases
lifetime utility by raising longevity (the first line); second, it improves productivity given
longevity (associated with the first term in the bracket of the second line); and third, it
increases lifetime income net of consumption expenditure through raising longevity (the
second term in the bracket of the second line plus the third line).
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Using equations (2)–(5), the budget constraint and the health production equation in
the paper, we can solve c, xP and h as well as lifetime utility V (z0; a) for a woman who
works in agriculture.

Working in nonagriculture

Now we derive optimal conditions given that a woman works in nonagriculture from the
adult period. The Lagrangian is as follows.

L(c, xP ,m, e, h,�1,�2,�3) =U(c, h) + �1{( � e)pa⌘A⇣Fh
�F � ⌧ +Ahµz1�µ(1� )[

�(h)

1 + r
+

�(h)2�

(1 + r)2
]

� xP �m� (paca,0 + cn,0)�
�(h)(paca,1 + cn,1)

1 + r
� �(h)2(paca,2 + cn,2)

(1 + r)2
}

+ �2[h0Bx↵1
E (b+ xP )

↵2 � h] + �3[z0(1 + ⇢h✓1e✓2m✓3)� z]

(6)

where �1, �2 and �3 are Lagrangian multipliers associated with the budget constraint,
health capital and human capital formation, respectively. We then derive FOCs as follows.

ca,0 � c̄ =
ca,1 � c̄

�(1 + r)
=

ca,2 � c̄

�2(1 + r)2
, cn,0 =

cn,1
�(1 + r)

=
cn,2

�2(1 + r)2
, (7)

⌫

pa(ca,0 � c̄)
=

1� ⌫

cn,0
= �1, (8)

�1 = �2h0B↵2x
↵1
E x↵2�1

P , (> if xP = 0) (9)

�1 = �3z0⇢✓3h
✓1e✓2m✓3�1, (> if m = 0) (10)

�1pa⌘A⇣Fh
�F = �3z0⇢✓2h

✓1e✓2�1m✓3 , (> if e = 0) (11)

�1A(1� µ)hµz�µ(1� )[��(h) + �2�(h)2�] = �3, (12)

[��0(h) + 2�2�(h)�0(h)][⌫log(ca,0 � c̄) + (1� ⌫)log(cn,0)

+[��0(h) + 4�2�(h)�0(h)]log[�(1 + r)] +
1� ⌫

cn,0
{( � e)pa⌘A⇣F�Fh

�F�1

+Aµhµ�1z1�µ(1� )[
�(h)

1 + r
+

�(h)2�

(1 + r)2
+

h

µ
· ( �

0(h)

1 + r
+

2�(h)�0(h)�

(1 + r)2
)]

�[��0(h) + 2�2�(h)�0(h)][pa(ca,0 � c̄) + cn,0]� [
�0(h)

1 + r
+

2�(h)�0(h)

(1 + r)2
]pac̄+

✓1
✓3

· m
h
}

=
1� ⌫

cn,0
· 1

h0B↵2x
↵1
E (b+ xP )↵2�1

(13)

Compared with the FOCs of the agricultural problem, the additional equations (10)–(13)
represent FOCs of m, e, and h. Note that now in addition to enhancing utility (directly)
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and lifetime income net of consumption expenditure through longevity and productivity,
health benefits one’s life by improving the efficacy of education investment (last term of the
LHS of (13)).

Moreover, we can derive the following conditions using equations (10), (11) and (12):

pa⌘A⇣Fh
�F =

✓2
✓3

· m
e

(14)

A(1� µ)hµz�µ(1� )[
�(h)

1 + r
+

�(h)2�

(1 + r)2
][z0⇢✓3h

✓1e✓2m✓3�1] = 1 (15)

Using (8), (13)–(15), the budget constraint, health capital and human capital production
equations in the paper, we can solve c, xP , m, e, h, and z as well as lifetime utility V (z0;n)

for a woman who works in nonagriculture.

The sectoral choice

Given lifetime utility associated with each sector, a woman chooses the sector in which to
work for her adult and old periods at the beginning of life and allocates her budget between
consumption and investment in health and education accordingly. Thus, an individual’s
value function is given by

V (z0) = max
{a,n}

{V (z0; a), V (z0;n)} (16)

C. Counterfactual experiments with labor force participation

This section attempts to address the concern that, while the labor force participation (LFP)
rate is assumed to be one for the middle- and old-aged in the model, the asymmetric
relation between LFP and countries’ income level between genders observed in the data
may otherwise change some of my counterfactual results. To address this issue, instead of
building the LFP decision into the model, I estimate the gender LFP ratio from the data for
the counterfactual experiments in Section 4.1, and recompute sectoral employment share
and labor productivity.

I first run a regression analysis to find the relation between the female-to-male LFP ratio
and GDP per capita using cross-country data from ILOSTAT and WDI.8 The regression
model is as follows:

LPratio,i = �0 + �1gdpi + �2gdp
2
i + "

where LPratio,i is the ratio of the female-to-male LFP rate of country i and gdpi is the log
of GDP per capita of country i, and " is the error term. The estimated coefficients �̂0, �̂1,

8The cross-country data of LFP by gender are taken from ILOSTAT (for the year 2010, which is the
earliest data available), and GDP per capita is the 2000–2010 average, taken from WDI. The LFP data of
Kenya are unavailable in ILOSTAT but are available in WDI for the year 2019, which I take for estimation.
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and �̂2 turn out to be 5.129, -0.994, and 0.055, suggesting a U-shaped relationship between
the gender LFP ratio and a country’s income level.

Next, for each experiment in Section 4.1, I compute GDP per capita in log, convert
it to the data scale (denoted by Ypc) and use it to estimate the gender LFP ratio by:
L̂P ratio = �̂0 + �̂1Ypc + �̂2Y 2

pc. Then I use L̂P ratio to recompute sectoral employment share
and labor productivity for each experiment, assuming that LFP is independent of individual
productivity.9

The results are shown in Table A1. The gender LFP ratio drops in all experiments as
Kenya’s GDP per capita rises, with the largest drop occurring in the TFP experiment. The
impact on the sectoral employment share and productivity is very modest, though. The
slight increase in both sectoral and aggregate labor productivity is unsurprising: since men
are on average more productive than women in each sector, reducing women’s participation
would drive up average labor productivity, given that individual productivity is independent
of participation (by assumption). Overall, the results are very close to those without LFP
considerations, suggesting the LFP decision is unlikely to change my benchmark results
considerably.

Table A1. Counterfactual results with LFP (all in %)

TFP B xE

L̂P ratio 88.6 91.2 98.0
agremp 0.54 2.58 -0.04
yqa 1.27 1.09 0.28
yqn 0.42 0.56 0.09
y 0.43 0.49 0.16

Note. This table shows, for each counterfactual experiment of Section 4.1, the estimated female-to-male
LFP ratio relative to the benchmark value (L̂P ratio), and the percentage change in agricultural employment
share (agremp), and sectoral and aggregate labor productivity (yqa, yqn, y) from the corresponding results
in Section 4.1 (Table 6).
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